Жизь звезд: Черные дыры


Жизь звезд: Черные дыры
Во что превращаются звезды в конце жизни: Черные дыры
Термин "черная дыра" был весьма удачно введен в науку Джоном Уиллером в 1968 для обозначения "застывшей", сколлапсировавшей звезды.
Черные Дыры.
Термин "черная дыра" был весьма удачно введен в науку Джоном Уиллером в 1968 для обозначения "застывшей", сколлапсировавшей звезды. Рассмотрим, что происходит при сжатии шара с массой M и радиусом R.

Хорошо известно, что для того, чтобы преодолеть силу притяжения такой массы, частица на поверхности должна приобрести вторую космическую скорость , где G - постоянная тяготения Ньютона. Ясно, что при уменьшении радиуса при постоянной массе эта скорость возрастает и может достичь скорости света - предельной скорости, с которой могут двигаться любые физические объекты. Это наступает когда радиус тела становится равным . Численно этот радиус, называемый гравитационным радиусом, равен примерно 3 км для массы Солнца. Если установить на поверхности шара часы, испускающие периодический сигнал, то при сжатии шара период колебаний для далекого наблюдателя нчинает возрастать, сигнал приходит все реже и реже (хотя в системе отсчета самих часов ровным счетом ничего не происходит!) и наконец при приближении к гравитационному радиусу время ожидания следующего сигнал асимптотически стремится к бесконечности.

Поскольку любая информация может передаваться не более чем со скоростью света, коллапсирующее тело как бы уходит за горизонт событий для далекого наблюдателя. Что происходит с веществом коллапсирующего тела? Его плотность увеличивается но все время остается конечной, а момент прохождения гравитационного радиуса никак не выделен. Аналогично можно рассмотреть как меняется длина волны принимаемого излучения, ведь свет - это колебания электромагнитного поля. Значит, при коллапсе длина волны света (период колебаний!) возрастают (свет "краснеет"), энергия принимаемых фотонов, обратно пропорциональная длине волны, уменьшается и стремится к нулю по мере достижения телом гравитационного радиуса.

Итак, если в начале коллапса имелась светящаяся звезда, то для наблюдателя она постепенно "краснеет" и затухает. Что остается? Остается масса, создающая гравтационное поле. На достаточно больших расстояниях от черной дыры ее гравитационное поле неотличимо от гравитационного поля любого тела той же массы. Оказывается, что кроме массы черная дыра может еще характеризоваться моментом вращения и электрическим зарядом. Магнитного поля у ченых дыр быть не может. Удивительно, но самые "экзотические" с точки зрения образования и проявления космичесике объекты - черные дыры - устроены гораздо проще, чем самые обычные звезды или планеты. У них нет химического состава, их строение не связано с различными типами взаимодействия вещества - они описываются только уравнениями гравитации Эйнштейна. Но если черные дыры "не светят", то как же можно судить о реальности этих объектов в Галактике и во Вселенной?

На этот фундаментальный вопрос есть только один ответ: изучая особенности гравитационного поля в очень компактных областях пространства. Например, для этого надо "поискать" черные дыры в окружении вещества и изучая движение этого вещества делать заключение об особенностях гравитационного поля. К счастью, такая ситуация в Галактике может быть реализована в тесных двойных звездах. Как мы упоминали, приливные силы в тесной системе могут срывать вещество с нормальной звезды. Вещество, притягиваясь к черной дыре, закручивается в вихрь (так называемый аккреционный диск) вокруг притягивающей массы. Если в центре находится черная дыра, то изучая рентгеновское излучение, идущее из внутренних, самых близких и самых горячих частей диска, можно судить о свойствах пространства-времени вблизи черной дыры.

В настоящее время (осень 1996 г.) существуют косвенные доказательства существования черных дыр в 11 тесных двойных рентгеновских звездах. Наиболее известные "кандидаты" - источники Лебедь Х-1, Лебедь Х-3, а также рентгеновские Новые. Основные аргументы в пользу существования черных дыр в этих системах сводятся:
  • к отсутствию известных проявлений "твердой поверхности" и эффектов магнитного поля при аккреции вещества - не наблюдаются явления типа рентгеновского пульсара или рентгеновского барстера;
  • к большой массе невидимого компонента двойной системы, больше 3 масс Солнца (напомним, что это верхняя граница предела Оппенгеймера-Волкова для массы нейтронной звезды, получаемая в рамках общей теории относительности Эйнштейна).
    Последние достижения рентгеновской астрономии (особенно возможность исследования миллисекундной переменности рентгеновского излучения), новые возможности оптических телескопов для регистрации очень слабых потоков света дают надежду, что твердое доказательство существования черных дыр звездной массы в Галактике будет получено в течение ближайших 5-10 лет. Но очень вероятно, что "открытие" ченых дыр будет связано совершенно с новым, еще только развивающимся направлением астрономии - гравитационно-волновой астрономией. Первые гравитационно-волновые детекторы, способные, как предполагают их разработчики, регистрировать необычайно слабые гравитационные волны, будут введены в действие уже к 2000 году. Есть большая вероятность, что первые обнаруженные этими детекторами космические источники окажутся двойными черными дырами, сливающимимся из-за потерь орбитальной энергии на гравитационное излучение.
    Что век грядущий нам готовит?

    Оценить Статью:  
    1   2   3   4   5   6   7   8   9   10    

    « Назад
  • SAPE все усложнил?

    MainLink - простая и прибыльная продажа ссылок!

    Последние поступления:

    Стишки пирожки про Олега⁠⁠

    Размещена 20 июня 2024 года

    Олег купил презервативы
    Проник в семидесятый год
    И подарил их папе с мамой
    Такой нелепый суицид

    читать далее…

    Размещена 10 августа 2020 года

    Я по ТВ видел, что через 10 лет мы будем жить лучше, чем в Германии...
    Я не понял, что это они с Германией сделать хотят?!

    читать далее…

    ТехЗадание на Землю

    Размещена 14 марта 2018 года

    Пpоект Genesis (из коpпоpативной пеpеписки)

    читать далее…

    Шпаргалка по работе с Vim

    Размещена 05 декабря 2017 года

    Vim довольно мощный редактор, но работа с ним не всегда наглядна.
    Например если нужно отредактировать какой-то файл например при помощи crontab, без знания специфики работы с viv никак.

    читать далее…

    Ошибка: Error: Cannot find a valid baseurl for repo

    Размещена 13 сентабря 2017 года

    Если возникает ошибка на centos 5 вида
    YumRepo Error: All mirror URLs are not using ftp, http[s] or file.
    Eg. Invalid release/

    читать далее…